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A study of the effect of anharmonicities and large amplitude vibrations on the thermodynamic properties of
the water dimer is presented. Different vibrational models have been constructed using ab initio data obtained
at the MP2(Full)/6-311++G(2d,2p) level. In particular, we present the first complete analysis of the rotation
of the hydrogen donor monomer around the O‚‚‚O axis. The potential barrier was found to be 221 cm-1. A
variational calculation of the torsional energy levels yields a fundamental frequency of 105 cm-1. The O‚‚‚O
stretching mode is described using a Morse function. The fundamental frequency and the dimerization energy
are calculated to be 153 cm-1 and 5.15 kcal/mol, respectively, in agreement with the experimental results.
For the dimerization reaction we have calculated∆S, ∆H, and the equilibrium constant,Kp. The results
show that inclusion of anharmonicity into the vibration modes favors the lower experimental limit for∆S
and the upper limit for∆H. In addition, the anharmonic corrections reduce the difference between calculated
and experimentalKp. This difference decreases with temperature. A high-temperature limit of 3.47× 10-5

atm-1 was found forKp.

Introduction

The accurate prediction of thermodynamic properties using
a pure theoretical basis is of great interest in modern chemistry.
The direct approach is exemplified by the computation of gas
phase enthalpy changes. The magnitude of these changes can
be determined by computing the internal energy of the system
and the change in mechanical energy,∆(pV) factor. The internal
energy can be calculated by ab initio methodology through the
computation of the total electronic energy, the zero-point
vibrational energy, and the changes in vibrational, rotational,
and translational energies at the considered temperature.1

However, only enthalpy can be computed in this direct form.
In addition, an accurate determination of internal energy from
ab initio calculations needs large basis sets and to account for
the correlation energy. From a practical standpoint these
requirements are translated into large amounts of time and
computational resources for even moderate size molecules.
A more general approach to the computation of equilibrium

properties is based on statistical mechanics. Thus, any ther-
modynamic property can be computed using the partition
function, which incorporates all the energy states of the
molecule. In this form, it is possible to derive a functional
relationship between the molecular structure and a macroscopic,
equilibrium property. For an ideal gas, the nuclear, electronic,
and translational contributions to the partition function can be
easily determined.2 The vibrational and rotational contributions
are usually calculated using the rigid rotor-harmonic oscillator
approach. In this form, the derivation of equilibrium properties
is straightforward.2 The technique is implemented in several
popular quantum mechanical software packages.3 However, the
existence of nonrigidity invalidates the harmonic approximation.
Nonrigidity appears when several energetically accessible
minima exist on the potential hypersurface,4 and it is associated
with large amplitude, anharmonic vibrations, such as inversions
and internal rotations. Large amplitude modes are poorly
described by the harmonic approximation, which assumes a pure

quadratic dependence of the nuclear potential with the vibra-
tional coordinates.5 In addition, when a molecule undergoes
large amplitude vibration the vibrational kinetic term may
change significantly, and it is necessary to account for its
dependence on the vibrational coordinates.
Nonrigidity is related to inter- and intramolecular hydrogen

bonding due to the flatness of the potential hypersurface on the
coordinates involved in the hydrogen bond.6 This fact is
translated into very soft vibrational modes and therefore, into
anharmonicity and large amplitude motions. Since the vibra-
tional energy levels appear as negative exponents in the partition
function, accurate descriptions of low-frequency vibrations are
necessary for a reliable computation of equilibrium properties
using the statistical approach.
We have selected the water dimer for analyzing the effect of

anharmonicity and large amplitude motions on the thermody-
namics of hydrogen-bonded complexes. The water dimer is
the prototype of hydrogen-bonded complexes and has received
considerable attention from both the theoretical and the experi-
mental standpoints.6b,c,7,8 However, the low concentration of
dimers present in the water vapour (around 1% at 373 K and a
pressure of 1 atm) makes accurate thermodynamic and spec-
troscopic measurements difficult.7,9 Therefore, the theoretical
evaluation of the thermodynamic properties for the dimerization
reaction is of interest.
Formation of hydrogen-bonded complexes from two mono-

mers converts three rotational and three translational degrees
of freedom into six new intermolecular modes of low frequency.
In the water dimer, one of these modes is the hindered rotation
of the donor monomer around the O‚‚‚O axis. The effect of
this torsion on the thermodynamic functions has been considered
in previous work10,11using the Pitzer method. However, in this
approach, the kinetic term is considered to be constant with the
vibrational displacement and the potential function is rigid,
corresponding only to the first term of a Fourier expansion. No
detailed analysis for this mode has been provided so far.
On the other hand, an important feature in the vibrational

behavior of a H-bonded complex, X-H‚‚‚Y, is the interaction
between the X-H stretching of the hydrogen donor molecule
and the X‚‚‚Y stretching. These two modes are strongly
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coupled,12 and they have been extensively studied by IR and
rotational spectroscopy in different compounds.13 An adiabatic
model has been applied to the study of these motions. In this
model the low-frequency vibration contributes to the potential
with a harmonic term and moves in an average potential
generated by the high-frequency mode.12 Kinetic and potential
couplings are not explicitly considered. Variational models,
including potential coupling, can also be found in the literature.14

However, these models do not include the effect of the kinetic
coupling, and they use internal coordinates as vibrational
coordinates.
In this paper we investigate the effect of anharmonicities on

the thermodynamics of the dimerization of water. Thus,
anharmonic corrections are developed for different vibrational
modes. In particular, the internal rotation around the O‚‚‚O
axis and the O‚‚‚O stretching are considered. Also, the
reliability of the usual two-dimensional models used for
describing the stretching modes of hydrogen bonds is analyzed.
The effect of these corrections on the values of∆S, ∆H, and
the association constant of water is discussed and compared to
previous results.

Theory

The thermodynamic properties will be computed from the
canonical partition function,Q,

where the index runs on every energy state in the ensemble.
For an ideal gas we have2 Q ) qN/N!, for indistinguishable
particles, whereq is the molecular partition function andN
represents the number of molecules in the ensemble. The
molecular partition function,q, is factorized as a product ofqn,
qe, qt, qr, and qv, corresponding to the nuclear, electronic,
translational, rotational and vibrational partition functions.2 At
standard ambient temperature, only the ground nuclear and
electronic states need to be considered. Thus,qn is taken as
unity andqe as the ground electronic state degeneracy. The
translational partition function,qt, will be calculated with the
usual closed form2

whereM represents the total mass of the molecule,k the
Boltzman constant,h the Planck constant,T the absolute
temperature, andV the volume.
The rotational contribution will be computed applying the

semiclassical expression2

whereA, B, andC represent the overall rotational constants
determined at the equilibrium geometry andσ is the symmetry
number, i.e., the order of the rotational subgroup of the molecule.
The vibrational contribution,qv, can be fully factorized as a

product of 3N-6 partial partition functions

For a harmonic vibration,i, the contribution to eq 4 is
calculated using the closed form2

where the origin of energies is taken at the bottom of the
potential well andν0 corresponds to the fundamental frequency
of vibration.
The contribution of large amplitude vibrations to eq 4 will

be obtained by direct summation of states, which are determined
using the Hamiltonian for large range motions15-17

wheren stands for the number of vibrations,q represents the
vibrational coordinates andBij ) (p2/2)gij are the kinetic terms.
The kinetic elements,Bij, are obtained from the lastn × n
elements of the 3N × 3N rotational-vibrationalG matrix.16,17

The potential energy function for eq 6 will be obtained, within
the adiabatic approximation,18 from the total energy results of
accurate ab initio calculations. The potential functions will be
described through Fourier or Taylor series on the vibrational
coordinates.19-22 These calculations are performed by fixing
the internal coordinates in question and fully optimizing the
remaining molecular parameters.23 Equation 6 is then solved
using a variational formalism previously proposed.20 This
formalism allows the vibrations to be described with different
boundary conditions using hybrid free rotor+ harmonic
oscillator basis functions.21,24

The description of the slightly anharmonic vibrations can be
improved from the harmonic approximation by a potential
function that describes the potential hypersuface beyond the
quadratic zone. Thus, we will apply an independent modes
approach generating a potential function for finite displacements
on the normal coordinate.10,25 For a displacement,∆W, in the
Wi normal mode direction, the new Cartesian coordinates,r i,
are obtained as

where re represents the equilibrium position. The potential
energy can be expanded on∆W, yielding

Equation 8 represents a Taylor expansion of the potential energy
around the equilibrium position in the direction of a normal
coordinate. The coefficients of eq 8 will be obtained computing
the potential energy for several points obtained at different
increments∆W. After construction of the potential function,
the vibrational Hamiltonian will be solved variationally in the
harmonic oscillator basis set. The contribution to eq 4 will be
obtained by direct summation.
The reliability of the calculated partition function, eq 1, will

be enhanced by introducing experimental information, when
available, into lnQ, using the method described in ref 26. Thus,
at constant pressure, lnQ is transformed into a simple function
of the inverse of the absolute temperature,Y) 1/T, expanding
in a Taylor series

with

Equation 10 is obtained by performing a least-squares fit of
the theoretical lnQ values calculated for a set ofY points. The

Q) ∑
i

∞

exp[-εi/kT] (1)

qt ) (2πMkT/h2)3/2‚V (2)

qr ) (π1/2/σ) [(kT)3/(A‚B‚C)]1/2 (3)

qv ) ∏
i

3N-6

[∑
j

∞

exp[-εij/kT]] (4)

qv(i) ) exp[-ν0(i)/2kT]/(1 - exp[-ν0(i)/kT]) (5)

Ĥ ) ∑
i

n

∑
j

n (-Bij
∂
2

∂qi∂qj
-
∂Bij

∂qi

∂

∂qj
) + V(q1, ...,qn) (6)

r i ) re + ∆Wi (7)

Vi(W) ) ∑
j)2

(1/j!)(∂jVi/∂Wi
j)e‚∆Wi

j (8)

ln Q(T) ) ∑
i

AiY
i (9)

Ai ) (1/i!)(∂i ln Q/∂Yi)0 (10)
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experimental information is incorporated through minimizing
the difference between the computed and observed values for
several thermodynamic functions. Thus, consideringN ther-
modynamic magnitudes,X, we build an error function

whereC represents a vector composed by theAi terms of eq
10. Xi(C)c andXoi are the calculated and observed values for
the function, respectively. To reduce the error,E(C), we apply
a quasi-Newton multidimensional minimization27 with respect
to the Ai parameters.26 From a physical standpoint, the
refinement introduces the effect of the coupling between motions
not accounted for in the initial model. It also reflects the effect
of intermolecular interactions not considered in the ideal gas
approach used forQ.
After calculation of lnQ, the thermodynamic properties of

interest for this study are obtained through the usual statistical
expressions.2

Computational Details

The structural parameters, normal modes analysis, potential
functions and kinetic energy terms for the water monomer and
dimer are obtained from ab initio calculations using the triple
split plus polarization and diffuse functions 6-311++G(2d,2p)
basis set. This basis was selected because it has shown to be
enough flexible to describe hydrogen-bonded complexes at the
Hartree-Fock and correlated levels.28 Correlation energy is
accounted for at the all electrons MP2 level. All the calculations
are carried out using the GAUSSIAN 94 package3b except for
the normal modes analysis in internal coordinates that are
performed using the GAMESS3aprogram. The fully optimized
geometry of water dimer is obtained using the GAUSSIAN 94
“tight” option due to the existence of very soft vibrational
modes. The rotational-vibrationalG matrix and the kinetic
terms for large amplitude vibrations are obtained using the KICO
program.29 The vibrational energy levels are variationally
calculated with the NIVELON program.30 Finally, the refine-
ment of the partition function and the calculation of thermo-
dynamic properties are performed with the PARTI program.31

Results and Discussion

Water Monomer. The water monomer is an extensively
studied system. Thus, only the information needed for the
construction of the canonical partition function will be provided.
After full geometry optimization at the MP2(Full)/6-311++G-
(2d,2p) level, theA, B, andC rotational constants are found to
be 820.4, 438.3, and 285.7 GHz respectively. The harmonic
frequencies, computed after a normal modes analysis, are
collected in Table 1. To evaluate the effect of anharmonicity
in the partition function, anharmonic corrections are introduced
in the vibration modes. These corrections are obtained by
displacing the nuclei in the direction of the different normal
coordinates. Thus, displacements of(0.1 and(0.2 on the
normal coordinate are used for both the bending,ν1, and

symmetric stretching,ν2, modes. Potential functions are
obtained by fitting the results to a Taylor series on the vibrational
coordinates. The kinetic terms, anharmonic potentials, and
fundamental frequencies are shown in Table 1. It is found that
anharmonic corrections reduce the error in the frequencies to
1.6% and 3.7% for theν1 andν2 modes, respectively. However,
application of this approach to the asymmetric stretching mode,
ν3, results in a fundamental frequency higher than the harmonic
value. This result is unphysical since the harmonic approxima-
tion overestimates the fundamental frequency at the SCF and
correlated levels.33 The problem can be analyzed in terms of
the OH bond lengths variation. In the harmonic approximation
the parabolic shape of the potential makes the increase or the
decrease of the vibration coordinate equally probable. In the
asymmetric stretching of water this fact is translated in a normal
mode where the elongation of one OH bond equals the
shortening of the other. However, a simple Morse potential
shows that the contraction of a bond is more difficult than its
elongation. Thus, a finite displacement of equal magnitude in
both bonds leads to an increase of potential energy higher than
in the harmonic case. This fact is translated in a positive quartic
correction in the potential and, therefore, in an increase of the
fundamental frequency. The problem can be solved considering
the OH contraction amplitude with respect to the OH elongation
as a parameter. This parameter is optimized in theν3 normal
mode using internal coordinates.34 For each value of the
parameter, a potential function is derived and the fundamental
frequency is calculated. Using a steepest descent approach, the
difference between the experimental and calculated fundamental
frequencies is reduced below 1%. Thus, we found that a
reduction of 4% in the OH contraction yields a fundamental
frequency of 3785 cm-1, see Table 1.
From the rotational and vibrational information, we apply

eqs 2, 3, and 5 to obtain the partition function,Q. UsingQ, Cp

and S° are statistically calculated2 at 298.15 K and at a constant
pressure of 1 atm. In the harmonic case, we obtain 33.36 and
188.47 J/(mol‚K) for Cp and S°, respectively. In the anharmonic
case, the results areCp ) 33.39 J/(mol‚K) and S° ) 188.48
J/(mol‚K). These data can be compared to the experimental35

33.54 and 188.72 J/(mol‚K) values forCp and S°, respectively.
The anharmonic results are only slightly better than the
harmonic. The calculated internal and Gibbs energies are found
to be 62.42 and 8.71 kJ/mol in the harmonic case whereas 64.38
and 10.66 kJ/mol are obtained in the anharmonic one. In this
case, the difference increases up to 1.96 kJ/mol (0.47 kcal/mol).
For the study of the dimerization reaction, lnQ, (∂ ln Q/∂T)

and (∂2 ln Q/∂T2) are obtained from the anharmonic model for
temperatures ranging from 273.15 to 373.15 K. The functions
are fitted to 1/T, eq 9 and it is found that third order polynomials
in 1/T reproduce the data. From the experimental values 33.54
and 188.72 J/(mol‚K) for Cp and S°, respectively, the functions
are refined26 until the difference between calculated and
experimental values falls below 0.001 J/(mol‚K).
Water Dimer. The hydrogen-bonded water dimer exhibits

Cs symmetry. Thus, its 12 vibrational modes are classified as
symmetric or antisymmetric (a′, a′′) with respect to the symmetry

TABLE 1: Kinetic Terms at the Equilibrium Position, B, Potential Functions (V ) V2q2 + V3q3 + V4q4) and Fundamental
Frequencies for the Water Monomera

mode sym. B V2 V3 V4 νharb νanhc νexpd

ν1 a1 15.56 442 75.02 148 47.38 -294 15.68 1660 1620 1595
ν2 a1 16.14 232 034.83 -422 252.08 492 968.31 3870 3789 3652
ν3 b2 15.58 255 518.96 -100 422 0.44 3991 3785 3756

a TheV2 term corresponds to the harmonic approximation. Symmetry referred to theC2V point group. All data in cm-1. b This work, harmonic
frequencies at the MP2(Full)/6-311++G(2d,2p) level.c This work, anharmonic frequencies.d Experimental data taken from ref 32.

E(C) ) ∑
i

N

(Xi(C)c - Xo
i)2 (11)

4130 J. Phys. Chem. A, Vol. 101, No. 22, 1997 Muñoz-Caro and Nin˜o



plane. In this work, the normal modes are numbered using the
convention of Reimers et al.36 A tightened full molecular
geometry optimization was carried out at the MP2(Full)/6-
311++G(2d,2p) level. The resulting structure is shown in
Figure 1. At the equilibrium geometry theA,B, andC rotational
constants are found to be 6.41, 6.41, and 217.75 GHz respec-
tively. A normal modes analysis was performed. The harmonic
frequencies are collected in Table 2. The table also shows the
MP2/aug-cc-pVTZ37 and MP2/[9,6,4,2/6,4,2]38 calculated fre-
quencies and the available experimental values.
The six high-frequency modes, see Table 2, can be correlated

with the three vibrations of the water monomers. Anharmonic
corrections for these vibrations are obtained by displacement
of 0.1 on the normal modes except for theν3 mode, the hydrogen
donor O-H stretching, which will be described in a different
form. The a′′ symmetryν9 mode, the asymmetric stretching of
the acceptor monomer, shows the same wrong behavior as the
ν3 mode of water. It is solved in the same way, i.e., introducing
into the normal mode a difference of 4% in the bond variation.
The anharmonic potentials, the kinetic terms and the computed
fundamental frequencies are collected in Table 2. It is observed
that the anharmonic corrections produce a decrease of the
frequencies, approaching the experimental results. In particular,
the calculated frequency for theν9 mode agrees to within 1.4-
1.1% of the experimental data, Table 2. Theν3 stretching mode
is described through the O-H distance. Thus, a grid of points
on the O-H bond length is performed from 0.9242 to 1.0442
Å in increments of 0.2 Å. At each fixed O-H value the
geometry is fully optimized. The kinetic term,BOH, is obtained
through the rotational-vibrational G matrix.16,17 Since the
variation with the motion is found very small, the equilibrium
value,BOH ) 17.21 cm-1, will be used. The potential for the
ν3 vibration is constructed by fitting the total energy results to
a Taylor series on the displacement coordinate,∆rOH. Thus,
we obtain (in cm-1)

with correlation coefficientR) 1.00000 and standard deviation
σ ) 0.40 cm-1. The fundamental frequency is calculated
variationally within the harmonic oscillator basis. Table 2 shows
that the calculated frequency, 3548 cm-1, is smaller than both
the 3773 cm-1 harmonic result and the 3746 cm-1 found at the
MP2/[9,6,4,2/6,4,2] level.38 Table 2 also shows that our
anharmonic result is closer to the 3480 cm-1 experimental value.
The first of the low-frequency modes,ν12, is the hindered

rotation of the donor monomer around the O‚‚‚O axis. To
describe this mode, we have performed a conformational
analysis rotating the donor water molecule around the O‚‚‚O
axis. Thus, increments of 30° were used for the torsional angle,

θ, with the origin conformation taken at theCs symmetry
equilibrium position, see Figure 1. The remaining internal
coordinates were fully optimized at each point. Figure 2 shows
the resulting potential as a function of the torsional angle,θ. A
maximum is found in theC1 symmetryθ ) 150° conformation.
This maximum can be attributed to steric hindrance between
the hydrogens of the acceptor molecule and the free hydrogen
of the donor monomer. A local minimum appears atθ ) 180°
in theCs conformation where the projection of the donor free
hydrogen lies between the two hydrogens of the acceptor. The
barrier to rotation (θ ) 150° conformation- θ ) 0° conforma-
tion) is found 221 cm-1. This result falls between the 0.67 kcal/
mol (234 cm-1) computed at the MP2/6-311+G(d,p) level and
the 0.59 kcal/mol (206 cm-1) computed without molecular
relaxation at the MP4/6-311G+G(2df,2p) level.6a The energy
points and the kinetic terms,Bθ, obtained from the rotational-
vibrationalG matrix16,17, are fitted to Fourier expansions on
the torsional angle. The kinetic and potential functions obtained
are (in cm-1)

with R) 0.999 70,σ ) 0.03 cm-1 for Bθ andR) 0.999 80,σ
) 1.90 cm-1 for V. From these data the torsional energy levels
are computed variationally in the free rotor basis. The results
are collected in Table 3. The fundamental frequency is found
to be 105 cm-1. Table 2 shows that this value is smaller than
the harmonic 135 cm-1 computed at the same level of theory
and smaller than the 140 cm-1 obtained at the MP2/aug-cc-
pVTZ level.37 Our result agrees with recent experimental
findings from far infrared laser absorption spectroscopy39 that
suggest a value higher than 88 cm-1 for the torsional funda-
mental frequency. The stack of energy levels, Table 3, shows
the effect of the barrier. Near the bottom of the well the stack
resembles an ordinary vibration, but close and above the barrier
the behavior is similar to a free rotor. The distribution of energy
levels is very different from a set of levels spaced 135 cm-1 as
predicted by the harmonic approximation. Thus, an important
effect can be expected on the calculated thermodynamic
properties.
The a′ symmetryν7 mode corresponds to the O‚‚‚O stretch-

ing.36 A potential function was obtained from a grid of points
on the O‚‚‚O distance performed to both sides of the equilibrium
position, 2.9108 Å. Thus, values from 2.3108 to 3.9108 Å in
increments of 0.2 Å are used, including an additional point at
4.4108 Å. The remaining internal coordinates are fully opti-
mized at each point. The kinetic term is fixed at the equilibrium
value,BOO ) 1.87 cm-1, because only changes of 10-3 cm-1

with the O‚‚‚O distance are observed. The potential is obtained
by a nonlinear least squares fit of the energy points to a Morse
function on the displacement coordinate∆rOO. The result is
(in cm-1 )

with correlationR) 0.99172. The dissociation energy calcu-
lated from this potential is 5.15 kcal/mol. This result agrees
with both the accepted experimental value, 5.44( 0.7 kcal/
mol,44 and the accurate estimate of the complete basis set
dissociation energy, 5.0( 0.1 kcal/mol.8a Despite its simplicity,
the Morse function seems to be able to produce reliable values
for the dissociation energy of hydrogen complexes. This is also
supported by the results obtained for the hydrogen fluoride

Figure 1. Fully optimized geometry of the water dimer at the MP2-
(full)/6-311++G(2d,2p) level.θ refers to the torsional angle of the
donor monomer around the O‚‚‚O axis.

V) 201 000.50‚(∆rOH)
2 - 485 478.37‚(∆rOH)

3 +

636 271.61‚(∆rOH)
4 (12)

Bθ ) 34.30- 1.51 cos(θ) - 0.52 cos(2θ) + 0.14 cos(3θ)

V) 146.38- 104.79 cos(θ) - 38.56 cos(2θ) -
3.03 cos(3θ) (13)

V) 1802.1.[1- exp(-1.38∆rOO)]
2 (14)
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dimer26 where the Morse function predicted a dissociation
energy that only differs by 0.07 kcal/mol from the experimental
estimate. The energy levels for this mode will be obtained as

with

whereV represents the vibrational quantum number,BOO is the

kinetic term, De is the dissociation energy, anda is the
exponential factor in the Morse potential. Table 2 shows that
the calculated fundamental frequency, 153 cm-1, is in good
agreement with the experimental value,40 150 cm-1. The result
is closer to the observed frequency than the harmonic results
obtained at higher levels of theory, see Table 2.

The anharmonic corrections for the remaining low-frequency
modes,ν11, ν8, ν6, andν10, are obtained using displacements
along the normal modes. For these soft modes, large increments
of the normal coordinate are needed to describe the potential
surface. Therefore, we obtain large cubic and quartic corrections
that generate spurious potential minima. Thus, it is necessary
to limit the size of the basis in the variational treatment to
describe the zone of interest, and only the lowest energy levels
are correctly obtained. So, in this work only the fundamental
frequencies will be corrected. This problem is specially
important for theν11 mode. We have found that even anhar-
monic potentials previously proposed for this mode10 experience
the same problem. Thus, no correction is introduced in this
case. For theν6 mode it is possible to generate an anharmonic
correction using displacements of(0.25 and(0.5 on the normal
coordinate. Theν8 andν10modes are considered using normal
modes expressed in internal coordinates34 with displacements
of (2 and (1.5 respectively. The resulting kinetic terms,
potential functions, and fundamental frequencies, calculated
variationally in the harmonic oscillator basis, are shown in Table
2. The calculated frequencies are similar to the results obtained
at much higher level of theory, see Table 2.

The coupling between the O‚‚‚O stretching (ν7 mode) and
the bridge O-H stretching (ν3 mode) of the water dimer is
usually investigated by generating a two-dimensional model with
the O‚‚‚O and O-H distances as vibrational coordinates. Here,
we analyze the reliability of this approach constructing a two
dimensional model, including kinetic and potential interactions.
Thus, a grid of points from 2.5108 to 3.9108 Å and from 0.9242
to 1.0442 Å is performed on the O‚‚‚O and O-H coordinates
using increments of 0.4 Å. The coordinates not involved in
the grid are fully optimized at each point. The kinetic terms
are calculated through the elements of the rotational-vibrational
G matrix.16,17 The variation with the vibrational coordinates
for the BOO, BOO,OH, andBOH kinetic elements is found very
small. Thus, the equilibrium values, 1.929, 0.986, and 17.689
cm-1, are selected. An analytical function for the potential is
obtained by fitting the energy data to a double Taylor series

TABLE 2: Calculated, νcalc, and Experimental, νexp, Frequencies for the Water Dimera

mode sym. B V2 V3 V4 νbcalc νccalc νcalc νexp
ν12 a′′ 15.76 286.94 135 105d 140e >88g
ν11 a′′ 16.32 402.73 162 145e

ν8 a′ 9.45 699.74 182.21 -39.34 163 158 157e

ν7 a′ 8.72 1120.09 198 153d 186e 150h

ν6 a′ 15.23 2330.79 -723.47 377 371 354e 310,i 300j

ν10 a′′ 16.18 6748.23 -2876.15 661 639 645e 520,i 500j

ν5 a′ 15.55 44380.74 -15915.00 1661 1654 1630f 1601,i 1593j

ν4 a′ 15.65 45455.52 14845.00 1687 1680 1651f 1619,i 1612j

ν3 a′ 16.02 222246.00 3773 3548d 3746f 3480k

ν2 a′ 16.14 230595.07 -396130.00 506393.00 3858 3803 3835f 3627,l 3634m

ν1 a′ 15.69 249624.02 -507745.00 827948.00 3958 3905 3938f 3699,l 3709m

ν9 a′′ 15.58 253472.60 -995779.75 3974 3769 3957f 3715,l 3726m

a Kinetic terms at the equilibrium position,B, and potential functions (V ) V2q2 + V3q3 + V4q4) are included. TheV2 terms correspond to the
harmonic approximation. Symmetry referred to theCs point group. All data in cm-1. bHarmonic frequencies at the MP2(Full)/6-311++G(2d,2p)
level, this work and refs 10 and 28a.c Anharmonic frequencies, this work.d Anharmonic frequencies calculated with the potentials of eqs 13, 14,
and 12 and the kinetic terms presented in the text.eHarmonic frequencies computed at the MP2/aug-cc-pVTZ level.37 f Harmonic frequencies
computed at the MP2/[9,6,4,2/6,4,2] level.38 g From tunable far infrared laser absorption spectroscopy.39 h From electric resonance spectroscopy.40

i Experimental data obtained in solid nitrogen matrix.41 j Experimental data obtained in solid argon matrix.41 k From coherent anti-Stokes Raman
spectroscopy (CARS).42 l Experimental data obtained in solid nitrogen matrix.43 mExperimental data obtained in solid argon matrix.43

Figure 2. Potential energy curve for the torsion,ν12mode, of the donor
water monomer around the O‚‚‚O axis in the water dimer.

TABLE 3: Calculated Torsional Energy Levels, in cm-1, for
the Water Dimera

v12 sym. ν (cm-1 )

0 a′ 0
1 a′′ 105
2 a′ 157
3 a′ 228
4 a′′ 233
5, 6 a′′ 397
7, 8 a′, a′′ 634
9, 10 a′, a′′ 942
11, 12 a′, a′′ 1318

a The first energy level is placed at 62 cm-1 of the potential well.
The first column corresponds to a pure vibrational quantum number.
Symmetry referred to theCs point group.

ν ) νe(V + 1/2) - Veøe(V + 1/2)
2 (15)

νe ) 2xDea
2BOO

øe ) νe/4De (16)
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expansion on the vibrational coordinates. Thus, we get (in
cm-1)

with correlationR) 0.999 93 and standard deviationσ ) 14.31
cm-1. The vibrational energy levels are computed variationally
in a double harmonic oscillator basis. The fundamental
frequencies for the O‚‚‚O and the O-H stretching modes are
found to be 176 and 3321 cm-1, respectively. These data can
be compared to the corresponding 198 and 3773 cm-1 harmonic
values and to the anharmonic one-dimensional results, 153 and
3548 cm-1, see Table 2. The two-dimensional fundamental
frequency for the O‚‚‚O stretching is higher than the one-
dimensional value but is still closer to the experimental result
than the value obtained at the MP2/aug-cc-pVTZ level, see
Table 2. On the other hand, the two-dimensional fundamental
frequency for the O-H stretching is smaller than the experi-
mental value. This fact can be explained decomposing the
normal mode in internal coordinates. Thus, the Boatz and
Gordon decomposition34 is applied with GAMESS3a using the
Hessian computed at the equilibrium position. The results show
that the symmetric O-H stretching mode,ν3, includes both the
variation of the bridge O-H bond and the variation of the free
donor O-H bond in a proportion of 3:1. Thus, this mode can
only be approximately described by a single internal coordinate.
However, the Boatz and Gordon decomposition34 shows that
the O‚‚‚O stretching mode,ν7, is mainly composed of the O‚‚‚O
distance. In this work we will use the one-dimensional results
for theν3 andν7 modes because they seem to be more reliable.
Dimerization Reaction. For the dimerization reaction of

water

the equilibrium constant can be obtained as2

whereqM and qD represent the molecular partition functions
for the water monomer and dimer respectively,De represents
the association energy, andNa is Avogadro’s constant. To
compare with the available experimental data,Kp, ∆Sand∆H
have been calculated at 373 K and at a constant pressure of 1
atm. The effect of anharmonicity on the thermodynamic
properties is analyzed using the refined partition function of
the monomer,De ) 5.15 kcal/mol, and a lnqD obtained in four
different cases. The first and second cases are obtained applying
eq 5 with the harmonic and anharmonic data of Table 2,
respectively. The third case uses the anharmonic data of Table

2 except the torsion,ν12 mode, which is introduced in the
partition function as a summation of the torsional levels collected
in Table 3. The last case is similar to the third but also
introduces the O‚‚‚O stretching as a summation of the one-
dimensional energy levels obtained with eq 15. In Table 4 the
results are compared to the experimental data.
Case a of Table 4 shows that the harmonic picture yields a

much smallerKp than the experimental value. Inclusion of the
anharmonic corrections, cases b, c, and d of Table 4, increases
uniformly the∆SandKp values and approaches the experimental
estimates. Cases b and c of Table 4 show a decrease of∆H
with respect to the pure harmonic case. Inclusion of the O‚‚‚O
stretching levels, case d, is reflected in an increase from the
previous estimate, case c. Table 4 shows that these findings
favor, in absolute terms, the upper limit of∆S and the lower
limit of ∆H experimental estimates. This behavior of∆H has
been observed by Feyereisen et al.8a from a harmonic model
where anharmonicity in some low-frequency modes is intro-
duced by halving the fundamental frequency. The smaller value
obtained by these authors for∆S can be attributed to the
simplicity of the anharmonic treatment for the low-frequency
vibrations. Our most accurate result forKp, 0.0034 atm-1, case
d of Table 4, is smaller than the experimental value,44 0.0110
atm-1. This discrepancy could be attributed to the use of the
harmonic oscillator closed form, eq 5, for the anharmonicν11,
ν8,ν6, and ν10 modes. This fact would be reflected in a
contribution toKp smaller than expected because the energy
levels of an anharmonic oscillator are closer than in the harmonic
picture. An estimate of the contribution toKp of these modes
can be obtained as follows. We can assume a contribution from
each mode equal to the increase, 0.0002 atm-1, observed in case
d of Table 4 when the direct summation of the O‚‚‚O stretching
energy levels is added to case c of Table 4. Thus, the four
anharmonic modes yieldKp ) 0.0042 atm-1, a result still smaller
than the experimental. Although the present work is not
accurate enough for a quantitative conclusion, the higherKp

found experimentally could, to some extent, be associated to
the assumptions used in the experimental work.44 Our results
together with the findings of Feyereisen et al.8asuggest the utility
of more accurate experimental studies to firmly establish the
∆S, ∆H, and theKp values.
An analytical expression for the variation ofKp with

temperature can be derived from eq 19. Therefore, a canonical
partition function for the dimer is obtained using temperatures
from 273.15 to 373.15 K at a constant pressure of 1 atm using
the conditions of case d of Table 4. Using the monomer and
dimer partition functions and eq 19 we get

Figure 3 shows how the difference between the calculated and
the experimentalKp decreases with temperature. This is a
consequence of the population of energy levels. Both curves
show the same high-temperature limit that, from eq 20, is found
to be 3.47 10-5 atm-1.

TABLE 4: Variation of Entropy, Enthalpy and Equilibrium Constant for the Reaction of Formation of the Water Dimer a

property case ab case bc case cd case de exptf

∆S(cal/(mol‚K)) -20.98 -19.87 -19.83 -19.48 -18.59( 1.30
∆H (kcal/(mol‚K)) -2.24 -3.08 -3.15 -3.06 -3.59( 0.5
Kp (atm-1) 0.0005 0.0029 0.0032 0.0034 0.0110

aData at 373 K and at a constant pressure of 1 atm. The refined partition function of the monomer is used in all the cases.bCalculated with
eq 5 using the harmonic frequencies for the water dimer.cCalculated with eq 5 using the anharmonic frequencies for the water dimer.dCalculated
with direct summation of energy levels for the torsion,ν12, mode. The remaining modes are included with eq 5 using the anharmonic frequencies.
eCalculated with direct summation of energy levels for the torsion,ν12, and O‚‚‚O stretching,ν7, modes. The remaining modes are included with
eq 5 using the anharmonic frequencies.f Experimental data estimated from thermal conductivity measurements.44

V) 4492.06(∆rOO)
2 - 6402.05(∆rOO)

3 +

2932.41(∆rOO)
4 + 198 791.32(∆rOH)

2 -

381 040.61(∆rOH)
3 - 139 383.44(∆rOH)

4 -

866.44(∆rOO)(∆rOH) + 2367.67(∆rOO)
2(∆rOH) +

2206.79(∆rOH)
2 (17)

2H2O(g)/ (H2O)2(g) (18)

ln Kp ) ln qD - 2‚ln qM + ln Na + De/RT (19)

ln Kp ) -10.27+ 1595.29/T+ 162 015 58.49/T3 (20)
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Conclusions

The effect of anharmonicities on the thermodynamic proper-
ties of water dimerization is studied using a statistical model.
Inclusion of anharmonicities into the model for the water
monomer is not reflected in a significant change of theCp and
S values. However, in the cases of the internal and Gibbs
energies the difference reaches 0.47 kcal/mol. In the water
dimer, anharmonic corrections are introduced to the vibrational
modes. In particular, the torsional motion of the donor molecule
around the O‚‚‚O axis in the water dimer is fully analyzed for
the first time. The fundamental frequency for this torsional
mode is found to be 105 cm-1. This result agrees with the
experimental evidence for a value39 higher than 88 cm-1. The
barrier to internal rotation is estimated in 221 cm-1.

The dissociation energy of the water dimer, obtained by fitting
the O‚‚‚O stretching mode to a Morse oscillator, is found to be
5.15 kcal/mol. This result agrees with the experimental value
5.44( 0.7 kcal/mol44 and the theoretical complete basis set
result estimated at 5.0( 0.1 kcal/mol.8a The fundamental
frequency of vibration is estimated to be 153 cm-1, in agreement
with the experimental value,40 150 cm-1.

The reliability of the usual two-dimensional model, which
uses internal coordinates, for the symmetric OH stretching of
the water donor and the O‚‚‚O stretching is investigated. Using
this model, we found that the calculated fundamental frequency
for the OH mode underestimates the experimental result. This
discrepancy arises from the composition of the symmetric OH
stretching mode, which is only approximately described by the
OH bond length. Thus, this type of two-dimensional model
gives only a qualitative description of the coupling between the
hydrogen bond stretching modes.

The effect of anharmonicity in∆S, ∆H, and theKp constant
for the dimerization reaction is investigated. The inclusion of
anharmonic corrections favors, in absolute terms, the upper limit
of ∆Sand the lower limit of∆H experimental estimates whereas
theKp value approaches the experimental result. However, our
best estimate forKp is smaller than the experimental one. This
fact is probably caused by the lack of interaction in the
vibrational model. Finally, it is found that the difference
between the calculated and experimentalKp values decreases
with temperature. The high-temperature limit is estimated to
be 3.47× 10-5 atm-1.
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(17) Niño, A; Muñoz-Caro, C.Comput. Chem.1994,18, 27-32.
(18) Szabo, A.; Ostlund, N. S.Modern Quantum Chemistry; Mc Graw

Hill, Inc.: New York, 1989; pp 43-45.
(19) (a) Smeyers, Y. G.; Nin˜o, A.; Moule, D. C.J. Chem. Phys.1990,

93, 5786-5795. (b) Ozkabak, A. G.; Philis, J. G.; Goodman, L.J. Am.
Chem. Soc.1990, 112, 7854-7860. (c) Ozkabak, A. G.; Goodman, L.J.
Chem. Phys.1992, 96, 5958-5968. (d) Smeyers, Y. G.; Senent, M. L.;
Botella, V.; Moule, D. C.J. Chem. Phys.1993, 98, 2754-2767. (e)
Goodman, L.; Kundu, T.; Leszczynski, J.J. Phys. Chem.1996, 100, 2770-
2783.

(20) Muñoz-Caro, C.; Nin˜o, A.; Moule, D. C.Chem. Phys.1994, 186,
221-231.
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