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Effect of Anharmonicities on the Thermodynamic Properties of the Water Dimef'
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A study of the effect of anharmonicities and large amplitude vibrations on the thermodynamic properties of
the water dimer is presented. Different vibrational models have been constructed using ab initio data obtained
at the MP2(Full)/6-311+G(2d,2p) level. In particular, we present the first complete analysis of the rotation
of the hydrogen donor monomer around the-O axis. The potential barrier was found to be 221 tmA
variational calculation of the torsional energy levels yields a fundamental frequency of 165 Thre O--O
stretching mode is described using a Morse function. The fundamental frequency and the dimerization energy
are calculated to be 153 ctand 5.15 kcal/mol, respectively, in agreement with the experimental results.
For the dimerization reaction we have calculated AH, and the equilibrium constank,. The results
show that inclusion of anharmonicity into the vibration modes favors the lower experimental limitSfor
and the upper limit foAH. In addition, the anharmonic corrections reduce the difference between calculated
and experimentaK,. This difference decreases with temperature. A high-temperature limit of-3 47>

atnt ! was found forK.

Introduction guadratic dependence of the nuclear potential with the vibra-
tional coordinate$. In addition, when a molecule undergoes

. O . . ; large amplitude vibration the vibrational kinetic term may
a pure theoretical basis is of great interest in modern chemlstry.Change significantly, and it is necessary to account for its

TE:silr:r?tchﬁ)procic;nIsegxe%pé“frlﬁg ?ﬁiutzg g?mzzteagﬁznc’feiasag]ependence on the vibrational coordinates,
P ha'py ges.. ag 9 Nonrigidity is related to inter- and intramolecular hydrogen
be determined by computing the internal energy of the system : -
- . . bonding due to the flatness of the potential hypersurface on the
and the change in mechanical enewy{pV) factor. The internal di involved in the hvd bohdThis f .
energy can be calculated by ab initio methodology through the coordinates involved In the hydrogen This fact IS
translated into very soft vibrational modes and therefore, into

computation of the total electronic energy, the zero-point . . ! . .
oo AR ; anharmonicity and large amplitude motions. Since the vibra-
vibrational energy, and the changes in vibrational, rotational, _. . : "

: . . tional energy levels appear as negative exponents in the partition
and translational energies at the considered temperﬁlature.f - d . £ low-f ibrati
However, only enthalpy can be computed in this direct form unction, accurate 'escnptlons of low-requency vi rations are

L L : " necessary for a reliable computation of equilibrium properties
In addition, an accurate determination of internal energy from = ~. i
L . . using the statistical approach.
ab initio calculations needs large basis sets and to account for . .

. . . We have selected the water dimer for analyzing the effect of

the correlation energy. From a practical standpoint these - . .
) . . anharmonicity and large amplitude motions on the thermody-
requirements are translated into large amounts of time and : : 4
- . namics of hydrogen-bonded complexes. The water dimer is
computational resources for even moderate size molecules. .
A more general approach to the computation of equilibrium the prototype of hy(_jrogen-bonded complexgs and has recelvgd
roperties is based on statistical mechanics. Thus. an ther_conaderable attention from both the theoretical and the experi-
Fnog namic broperty can be computed using the a?/tition mental standpoint®:c78 However, the low concentration of
funct)ilon WhilZ:h pinc}c;r orates all tﬁe ener gstatespof the dimers present in the water vapour (around 1% at 373 K and a
’ P 9y pressure of 1 atm) makes accurate thermodynamic and spec-

gﬂﬁgﬁfm lgetthgr?me’ ;;élsegazsr’lgtlfu(t:?u?eegr\:g ;nf]l;réfg:g:lictroscopic measurements difficdlf. Therefore, the theoretical
P PlCevaluation of the thermodynamic properties for the dimerization

equilibrium property. For an ideal gas, the nuclear, electronic, reaction is of interest.

o sl cortrbutons o e parton ncton <52 ™ Formato of yrogen-bonded compiees o o o
y : mers converts three rotational and three translational degrees

r Ily calculat ing the rigid rotdrarmoni illator . : :
are usually calculated using the rigid onic oscifiato of freedom into six new intermolecular modes of low frequency.

fapproa_\ch. In this form, the de_rivati(_)n_of equilibrium_properties In the water dimer, one of these modes is the hindered rotation
is straightforward. The technique is implemented in several of the donor monomer around the+@D axis. The effect of

Pop ular quantum mec h"?‘”'ce?' software packa’fg.emwever., the. this torsion on the thermodynamic functions has been considered
existence of nonrigidity invalidates the harmonic approximation. in previous work%1using the Pitzer method. However, in this
rl\rl1(i)nni&g;d;t%Stac?r?ter?gspo\?éhnetgl E%ggh;? €19 de;[t'?sllésig:aetZZ'ble a.ppro_ach, thg kinetic term is considered to be constant wi.thl the
with large amplitude, anharmonic vibration:S such as inversions vibrational displacement and the potential function is rigid,
arg pituce, . ’ corresponding only to the first term of a Fourier expansion. No
and mternal rotations. 'Large a.mpllltude ”?Odes are poorly detailed analysis for this mode has been provided so far.
described by the harmonic approximation, which assumes a pure On the other hand, an important feature in the vibrational

P : . : . behavior of a H-bonded complex,>H:---Y, is the interaction
This work is dedicated to the memory of Prof. Federico Peradejordi. .

* Corresponding author. E-mail: cmunoz@inf-cr.uclm.es. between the XH stretghlng of the hydrogen donor molecule
€ Abstract published ifAdvance ACS Abstractdfay 1, 1997. and the X--Y stretching. These two modes are strongly

S1089-5639(97)00134-5 CCC: $14.00 © 1997 American Chemical Society

The accurate prediction of thermodynamic properties using
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coupled!? and they have been extensively studied by IR and
rotational spectroscopy in different compouA#éisin adiabatic
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where the origin of energies is taken at the bottom of the
potential well and/g corresponds to the fundamental frequency

model has been applied to the study of these motions. In thisof vibration.

model the low-frequency vibration contributes to the potential
with a harmonic term and moves in an average potential
generated by the high-frequency mddeKinetic and potential
couplings are not explicitly considered. Variational models,
including potential coupling, can also be found in the literattire.
However, these models do not include the effect of the kinetic
coupling, and they use internal coordinates as vibrational
coordinates.

In this paper we investigate the effect of anharmonicities on
the thermodynamics of the dimerization of water. Thus,
anharmonic corrections are developed for different vibrational
modes. In particular, the internal rotation around the-Q
axis and the ©-O stretching are considered. Also, the
reliability of the usual two-dimensional models used for
describing the stretching modes of hydrogen bonds is analyzed
The effect of these corrections on the valuesA& AH, and

the association constant of water is discussed and compared t&oordlnateé

previous results.

Theory

The thermodynamic properties will be computed from the
canonical partition functionQ,

Q= expl—¢/kT] 1)

where the index runs on every energy state in the ensemble
For an ideal gas we hav& = gV/N!, for indistinguishable
particles, whereq is the molecular partition function and

The contribution of large amplitude vibrations to eq 4 will
be obtained by direct summation of states, which are determined
using the Hamiltonian for large range motiéthd”’

wheren stands for the number of vibrationg,represents the
vibrational coordinates anj = (12%/2)g; are the kinetic terms.
The kinetic elementsB;, are obtained from the last x n
elements of the!8 x 3N rotationat-vibrational G matrix16.1
The potential energy function for eq 6 will be obtained, within
the adiabatic approximatiod,from the total energy results of
accurate ab initio calculations. The potential functions will be

aBij 9
———|+ V(@ -0) (6)
ag; 90

82
" 00,

‘described through Fourier or Taylor series on the vibrational

9-22 These calculations are performed by fixing
the internal coordinates in question and fully optimizing the
remaining molecular parametefs.Equation 6 is then solved
using a variational formalism previously propog€d.This
formalism allows the vibrations to be described with different
boundary conditions using hybrid free roter harmonic
oscillator basis function&-24

The description of the slightly anharmonic vibrations can be
improved from the harmonic approximation by a potential
function that describes the potential hypersuface beyond the
quadratic zone. Thus, we will apply an independent modes

.approach generating a potential function for finite displacements

on the normal coordinaté:2> For a displacement\W, in the
W normal mode direction, the new Cartesian coordinatgs,

represents the number of molecules in the ensemble. Theare obtained as

molecular partition functiorg, is factorized as a product df,
Je O, O, and gy, corresponding to the nuclear, electronic,
translational, rotational and vibrational partition functiénit

r=r.+ AW, @)

standard ambient temperature, only the ground nuclear angwherer. represents the equilibrium position. The potential

electronic states need to be considered. Thyss taken as
unity andge as the ground electronic state degeneracy. The
translational partition functiorg, will be calculated with the
usual closed form

)

where M represents the total mass of the moleciKethe
Boltzman constanth the Planck constant] the absolute
temperature, antf the volume.

The rotational contribution will be computed applying the
semiclassical expressidn

0, = (27MKT/h?)%2-v

q. = (@"%0) [(KT)*/(AB-C)]** 3)
where A, B, and C represent the overall rotational constants
determined at the equilibrium geometry amés the symmetry
number, i.e., the order of the rotational subgroup of the molecule.

The vibrational contributiong,, can be fully factorized as a
product of N—6 partial partition functions

3N—6 o

Q= I_l [Z exp[—e;/KT]] (4)
i 9

For a harmonic vibrationj, the contribution to eq 4 is
calculated using the closed fofm

(i) = exp[=v(i)/2KT)/(1 — exp[-vo()/kT]) ~ (5)

energy can be expanded &W, yielding

V(W) = Z AAN(PV/OW) - AW, (8)
P

Equation 8 represents a Taylor expansion of the potential energy
around the equilibrium position in the direction of a normal
coordinate. The coefficients of eq 8 will be obtained computing
the potential energy for several points obtained at different
incrementsAW. After construction of the potential function,
the vibrational Hamiltonian will be solved variationally in the
harmonic oscillator basis set. The contribution to eq 4 will be
obtained by direct summation.

The reliability of the calculated partition function, eq 1, will
be enhanced by introducing experimental information, when
available, into InQ, using the method described in ref 26. Thus,
at constant pressure, @ is transformed into a simple function
of the inverse of the absolute temperatdfes 1/T, expanding
in a Taylor series

InQm =73 AY ©)

with

A = (L@ In Q/aY),

Equation 10 is obtained by performing a least-squares fit of
the theoretical IrQ values calculated for a set ¥fpoints. The

(10)
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TABLE 1: Kinetic Terms at the Equilibrium Position, B, Potential Functions ¢/ = V,g? + Vsg® + V4q*) and Fundamental
Frequencies for the Water Monome#

mode sym. B \ V3 Vs Vhal Vant® Vex®
V1 & 15.56 442 75.02 148 47.38 —294 15.68 1660 1620 1595
2 & 16.14 232 034.83 —422 252.08 492 968.31 3870 3789 3652
V3 b, 15.58 255 518.96 —1004220.44 3991 3785 3756

aThe V, term corresponds to the harmonic approximation. Symmetry referred 1B,th@oint group. All data in cmt. ® This work, harmonic
frequencies at the MP2(Full)/6-33#-G(2d,2p) level ¢ This work, anharmonic frequencie¢sExperimental data taken from ref 32.

experimental information is incorporated through minimizing symmetric stretching,v,, modes. Potential functions are
the difference between the computed and observed values forobtained by fitting the results to a Taylor series on the vibrational
several thermodynamic functions. Thus, considefihther- coordinates. The kinetic terms, anharmonic potentials, and
modynamic magnitudess, we build an error function fundamental frequencies are shown in Table 1. Itis found that
\ anharmonic corrections reduce the error in the frequencies to
_ i 2 1.6% and 3.7% for the; andv, modes, respectively. However,
E(C) = Z (X(C)e = %) (11) application of this approach to the asymmetric stretching mode,
' v3, results in a fundamental frequency higher than the harmonic
whereC represents a vector composed by fhderms of eq value. This result is unphysical since the harmonic approxima-
10. Xi(C). and X, are the calculated and observed values for tion overestimates the fundamental frequency at the SCF and
the function, respectively. To reduce the eri(C), we apply correlated level8® The problem can be analyzed in terms of
a quasi-Newton multidimensional minimizatférwith respect ~ the OH bond lengths variation. In the harmonic approximation
to the A parameterd® From a physical standpoint, the the parabolic shape of the potential makes the increase or the
refinement introduces the effect of the coupling between motions decrease of the vibration coordinate equally probable. In the
not accounted for in the initial model. It also reflects the effect asymmetric stretching of water this fact is translated in a normal
of intermolecular interactions not considered in the ideal gas mode where the elongation of one OH bond equals the
approach used faQ. shortening of the other. However, a simple Morse potential
After calculation of InQ, the thermodynamic properties of shows that the contraction of a bond is more difficult than its
interest for this study are obtained through the usual statistical elongation. Thus, a finite displacement of equal magnitude in

expressions. both bonds leads to an increase of potential energy higher than
in the harmonic case. This fact is translated in a positive quartic
Computational Details correction in the potential and, therefore, in an increase of the

Ifundamental frequency. The problem can be solved considering
the OH contraction amplitude with respect to the OH elongation
as a parameter. This parameter is optimized imtheormal
mode using internal coordinatés. For each value of the
arameter, a potential function is derived and the fundamental
requency is calculated. Using a steepest descent approach, the

The structural parameters, normal modes analysis, potential
functions and kinetic energy terms for the water monomer and
dimer are obtained from ab initio calculations using the triple
split plus polarization and diffuse functions 6-3#+G(2d,2p)
basis set. This basis was selected because it has shown to b
enough flexible to describe hydrogen-bonded complexes at the',. .
Hartree-Fock and correlated level8. Correlation energy is dlfferencg beMeen the experimental and calculated fundamental
accounted for at the all electrons MP2 level. All the calculations freque_nmes IS re_duced below 1%'. ThL.'S’ we found that a
are carried out using the GAUSSIAN 94 pack#gexcept for reduction of 4% in the OH contraction yields a fundamental
the normal modes analysis in internal coordinates that are freduency of 3785 cnt, see Table 1.
performed using the GAMESSprogram. The fully optimized From the rotational and vibrational information, we apply
geometry of water dimer is obtained using the GAUSSIAN 94 €gs 2, 3, and 5 to obtain the partition functi@h, UsingQ, C,
“tight” option due to the existence of very soft vibrational and S are statistically calculat@dit 298.15 K and at a constant
modes. The rotationalvibrational G matrix and the kinetic ~ pressure of 1 atm. In the harmonic case, we obtain 33.36 and
terms for large amplitude vibrations are obtained using the KICO 188.47 J/(moK) for C;and S, respectively. In the anharmonic
program?® The vibrational energy levels are variationally case, the results a€, = 33.39 J/(mokK) and S = 188.48
calculated with the NIVELON prograif. Finally, the refine- ~ J/(motK). These data can be compared to the experiméntal
ment of the partition function and the calculation of thermo- 33.54 and 188.72 J/(mt) values forC, and S, respectively.
dynamic properties are performed with the PARTI progtdm. The anharmonic results are only slightly better than the

harmonic. The calculated internal and Gibbs energies are found
Results and Discussion to be 62.42 and 8.71 kJ/mol in the harmonic case whereas 64.38
Water Monomer. The water monomer is an extensively and 10.66 kJ/mol are obtained in the anharmonic one. In this

studied system. Thus, only the information needed for the case, the difference increases up to 1.96 kJ/mol (0.47 kcal/mol).

construction of the canonical partition function will be provided. ~ For the study of the dimerization reaction,@ (9 In Q/aT)
After full geometry optimization at the MP2(Full)/6-313G- and @2 In Q/aT?) are obtained from the anharmonic model for
(2d,2p) level, theA, B, andC rotational constants are found to temperatures ranging from 273.15 to 373.15 K. The functions
be 820.4, 438.3, and 285.7 GHz respectively. The harmonic are fitted to 1T, eq 9 and it is found that third order polynomials
frequencieS, Computed after a normal modes ana|ysisy arein 1T reproduce the data. From the eXpeI’imental values 33.54
collected in Table 1. To evaluate the effect of anharmonicity and 188.72 J/(meK) for C, and S, respectively, the functions

in the partition function, anharmonic corrections are introduced are refineé until the difference between calculated and
in the vibration modes. These corrections are obtained by experimental values falls below 0.001 J/(rkoL

displacing the nuclei in the direction of the different normal Water Dimer. The hydrogen-bonded water dimer exhibits
coordinates. Thus, displacements 50.1 and+0.2 on the Cs symmetry. Thus, its 12 vibrational modes are classified as
normal coordinate are used for both the bending, and symmetric or antisymmetric (ad') with respect to the symmetry
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Figure 1. Fully optimized geometry of the water dimer at the MP2-
(full)/6-311++G(2d,2p) level.6 refers to the torsional angle of the
donor monomer around the:@O axis.

\ 70.83 °

0.9584 A/
1o4.79°\\

plane. In this work, the normal modes are numbered using the
convention of Reimers et &. A tightened full molecular
geometry optimization was carried out at the MP2(Full)/6-
311++G(2d,2p) level. The resulting structure is shown in
Figure 1. At the equilibrium geometry tife B, andC rotational
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0, with the origin conformation taken at th&s symmetry
equilibrium position, see Figure 1. The remaining internal
coordinates were fully optimized at each point. Figure 2 shows
the resulting potential as a function of the torsional an@le\
maximum is found in th&€; symmetryd = 150° conformation.
This maximum can be attributed to steric hindrance between
the hydrogens of the acceptor molecule and the free hydrogen
of the donor monomer. A local minimum appear®at 180°

in the Cs conformation where the projection of the donor free
hydrogen lies between the two hydrogens of the acceptor. The
barrier to rotation® = 150° conformation— 6 = 0° conforma-
tion) is found 221 cm?. This result falls between the 0.67 kcal/
mol (234 cn1!) computed at the MP2/6-333G(d,p) level and

the 0.59 kcal/mol (206 cmi) computed without molecular
relaxation at the MP4/6-3116G(2df,2p) levef2 The energy
points and the kinetic term8,, obtained from the rotational
vibrational G matrixt¢.17 are fitted to Fourier expansions on
the torsional angle. The kinetic and potential functions obtained
are (in cnt?)

constants are found to be 6.41, 6.41, and 217.75 GHz respec-

tively. A normal modes analysis was performed. The harmonic

frequencies are collected in Table 2. The table also shows the

MP2/aug-cc-pVT2” and MP2/[9,6,4,2/6,4,% calculated fre-
guencies and the available experimental values.

The six high-frequency modes, see Table 2, can be correlated

with the three vibrations of the water monomers. Anharmonic
corrections for these vibrations are obtained by displacement
of 0.1 on the normal modes except for thanode, the hydrogen
donor G-H stretching, which will be described in a different
form. The & symmetryvg mode, the asymmetric stretching of
the acceptor monomer, shows the same wrong behavior as th
vz mode of water. Itis solved in the same way, i.e., introducing
into the normal mode a difference of 4% in the bond variation.
The anharmonic potentials, the kinetic terms and the computed
fundamental frequencies are collected in Table 2. Itis observed

that the anharmonic corrections produce a decrease of the

frequencies, approaching the experimental results. In particular,
the calculated frequency for thg mode agrees to within 1-4
1.1% of the experimental data, Table 2. Thestretching mode

is described through the-€H distance. Thus, a grid of points
on the O-H bond length is performed from 0.9242 to 1.0442
A in increments of 0.2 A. At each fixed €H value the
geometry is fully optimized. The kinetic terrBgy, is obtained
through the rotationalvibrational G matrix1617 Since the
variation with the motion is found very small, the equilibrium
value,Bon = 17.21 cn1?, will be used. The potential for the
vz vibration is constructed by fitting the total energy results to
a Taylor series on the displacement coordin&e;y. Thus,
we obtain (in cn?)

V = 201 000.56(Ar,,)* — 485 478.37(Ary,)° +
636 271.61(Ary.)" (12)

with correlation coefficienR = 1.00000 and standard deviation
o = 0.40 cnt!l. The fundamental frequency is calculated
variationally within the harmonic oscillator basis. Table 2 shows
that the calculated frequency, 3548 This smaller than both
the 3773 cm? harmonic result and the 3746 cifound at the
MP2/[9,6,4,2/6,4,2] level® Table 2 also shows that our
anharmonic result is closer to the 3480 Crexperimental value.
The first of the low-frequency modes;,, is the hindered
rotation of the donor monomer around the-@ axis. To
describe this mode, we have performed a conformational
analysis rotating the donor water molecule around the @
axis. Thus, increments of 3Were used for the torsional angle,

B, = 34.30— 1.51 cosg) — 0.52 cos(®) + 0.14 cos(8)

V =146.38— 104.79 codf) — 38.56 cos(B) —
3.03 cos(8) (13)

with R=0.999 70,0 = 0.03 cn1 for By andR = 0.999 80,0
=1.90 cnttfor V. From these data the torsional energy levels
are computed variationally in the free rotor basis. The results
are collected in Table 3. The fundamental frequency is found
to be 105 cm. Table 2 shows that this value is smaller than

dhe harmonic 135 cm computed at the same level of theory

and smaller than the 140 crhobtained at the MP2/aug-cc-
pVTZ level3” Our result agrees with recent experimental
findings from far infrared laser absorption spectrosé8plyat
suggest a value higher than 88 thfor the torsional funda-
mental frequency. The stack of energy levels, Table 3, shows
the effect of the barrier. Near the bottom of the well the stack
resembles an ordinary vibration, but close and above the barrier
the behavior is similar to a free rotor. The distribution of energy
levels is very different from a set of levels spaced 135 tas
predicted by the harmonic approximation. Thus, an important
effect can be expected on the calculated thermodynamic
properties.

The & symmetryv; mode corresponds to the @O stretch-
ing3¢ A potential function was obtained from a grid of points
on the G--0O distance performed to both sides of the equilibrium
position, 2.9108 A. Thus, values from 2.3108 to 3.9108 A in
increments of 0.2 A are used, including an additional point at
4.4108 A. The remaining internal coordinates are fully opti-
mized at each point. The kinetic term is fixed at the equilibrium
value,Boo = 1.87 cnTl, because only changes of Focm™!
with the O--O distance are observed. The potential is obtained
by a nonlinear least squares fit of the energy points to a Morse
function on the displacement coordinakeco. The result is
(in cm1)

V = 1802.1.[1— exp(—1.38Ar )] (14)
with correlationR = 0.99172. The dissociation energy calcu-
lated from this potential is 5.15 kcal/mol. This result agrees
with both the accepted experimental value, 544.7 kcal/
mol** and the accurate estimate of the complete basis set
dissociation energy, 58 0.1 kcal/mol2 Despite its simplicity,
the Morse function seems to be able to produce reliable values
for the dissociation energy of hydrogen complexes. This is also
supported by the results obtained for the hydrogen fluoride
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TABLE 2: Calculated, vcac, and Experimental, vex, Frequencies for the Water Dimef

mode sym. B \ Vs \2 Yeale Vealc Vealc Vexp
V12 a' 15.76 286.94 135 105 14 >8g
Vi1 a’ 16.32 402.73 162 145
Vg a 9.45 699.74 182.21 —39.34 163 158 157
V7 a 8.72 1120.09 198 153 186 1500
Ve a 15.23 2330.79 —723.47 377 371 354 3101 300
V10 a’' 16.18 6748.23 —2876.15 661 639 645 5201 500
Vs a 15.55 44380.74 —15915.00 1661 1654 1680 1601} 1593
V4 a 15.65 45455.52 14845.00 1687 1680 1651 161911612
V3 a 16.02 222246.00 3773 3548 3746 348¢
V2 a 16.14 230595.07 -396130.00 506393.00 3858 3803 3835 3627! 3634"
2 a 15.69 249624.02 —507745.00 827948.00 3958 3905 30638 3699 3709
2 a’' 15.58 253472.60 —995779.75 3974 3769 3957  3715!3726"

aKinetic terms at the equilibrium positiol, and potential functionsV(= V. + Vaq® + V.ig*) are included. Tha/, terms correspond to the
harmonic approximation. Symmetry referred to @goint group. All data in cmt. ® Harmonic frequencies at the MP2(Full)/6-38+G(2d,2p)
level, this work and refs 10 and 28aAnharmonic frequencies, this work Anharmonic frequencies calculated with the potentials of eqs 13, 14,
and 12 and the kinetic terms presented in the tearmonic frequencies computed at the MP2/aug-cc-pVTZ EvélHarmonic frequencies
computed at the MP2/[9,6,4,2/6,4,2] levél® From tunable far infrared laser absorption spectrosédgyFrom electric resonance spectroscépy.
i Experimental data obtained in solid nitrogen mattix. Experimental data obtained in solid argon mattix¢ From coherent anti-Stokes Raman
spectroscopy (CARSY. ' Experimental data obtained in solid nitrogen matfix™ Experimental data obtained in solid argon matfix.
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Figure 2. Potential energy curve for the torsian, mode, of the donor
water monomer around the-@O axis in the water dimer.

TABLE 3: Calculated Torsional Energy Levels, in cn?, for
the Water Dimer?

Vi2 sym. v(cm?)
0 d 0
1 d’ 105
2 d 157
3 d 228
4 d’ 233
5,6 d' 397
7,8 d, d’' 634
9,10 g d' 942
11,12 a d' 1318

aThe first energy level is placed at 62 chof the potential well.
The first column corresponds to a pure vibrational quantum number.
Symmetry referred to th€s point group.

dimer® where the Morse function predicted a dissociation
energy that only differs by 0.07 kcal/mol from the experimental

kinetic term, D¢ is the dissociation energy, and is the
exponential factor in the Morse potential. Table 2 shows that
the calculated fundamental frequency, 153 ¢is in good
agreement with the experimental vai,50 cntl. The result

is closer to the observed frequency than the harmonic results
obtained at higher levels of theory, see Table 2.

The anharmonic corrections for the remaining low-frequency
modes,v11, vs, v, and vy, are obtained using displacements
along the normal modes. For these soft modes, large increments
of the normal coordinate are needed to describe the potential
surface. Therefore, we obtain large cubic and quartic corrections
that generate spurious potential minima. Thus, it is necessary
to limit the size of the basis in the variational treatment to
describe the zone of interest, and only the lowest energy levels
are correctly obtained. So, in this work only the fundamental
frequencies will be corrected. This problem is specially
important for thev;; mode. We have found that even anhar-
monic potentials previously proposed for this mEdexperience
the same problem. Thus, no correction is introduced in this
case. For thes mode it is possible to generate an anharmonic
correction using displacements-0.25 anct-0.5 on the normal
coordinate. Therg andv;omodes are considered using normal
modes expressed in internal coordinétasith displacements
of £2 and +1.5 respectively. The resulting kinetic terms,
potential functions, and fundamental frequencies, calculated
variationally in the harmonic oscillator basis, are shown in Table
2. The calculated frequencies are similar to the results obtained
at much higher level of theory, see Table 2.

The coupling between the -©0 stretching ¥7 mode) and
the bridge G-H stretching {3 mode) of the water dimer is
usually investigated by generating a two-dimensional model with
the O--O and C-H distances as vibrational coordinates. Here,
we analyze the reliability of this approach constructing a two

estimate. The energy levels for this mode will be obtained as dimensional model, including kinetic and potential interactions.

v=vv+ 1) — vgv+ 1) (15)
with
Vo= 24/Da’Bog
Xe= V4D, (16)

wherev represents the vibrational quantum numliBeyg is the

Thus, a grid of points from 2.5108 to 3.9108 A and from 0.9242
to 1.0442 A is performed on the-©0 and O-H coordinates
using increments of 0.4 A. The coordinates not involved in
the grid are fully optimized at each point. The kinetic terms
are calculated through the elements of the rotatiewgdrational

G matrix%17 The variation with the vibrational coordinates
for the Boo, Boo,on, and Boy kinetic elements is found very
small. Thus, the equilibrium values, 1.929, 0.986, and 17.689
cm!, are selected. An analytical function for the potential is
obtained by fitting the energy data to a double Taylor series
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TABLE 4: Variation of Entropy, Enthalpy and Equilibrium Constant for the Reaction of Formation of the Water Dimer 2

property case’a case b case & case d expt
AS (call(mokK)) —-20.98 -19.87 -19.83 -19.48 —18.59-+ 1.30
AH (kcal/(motK)) —2.24 —3.08 -3.15 —3.06 —3.59+ 0.5
Kp (atnm?) 0.0005 0.0029 0.0032 0.0034 0.0110

2Data at 373 K and at a constant pressure of 1 atm. The refined partition function of the monomer is used in all th€aksdated with
eq 5 using the harmonic frequencies for the water dif€alculated with eq 5 using the anharmonic frequencies for the water difGaiculated
with direct summation of energy levels for the torsion, mode. The remaining modes are included with eq 5 using the anharmonic frequencies.
¢ Calculated with direct summation of energy levels for the torsigg,and O--O stretchingy;, modes. The remaining modes are included with
eq 5 using the anharmonic frequencieBxperimental data estimated from thermal conductivity measurerffents.

expansion on the vibrational coordinates. Thus, we get (in

cm)

V = 4492.06(Ar 0)* — 6402.050r )% +

2932.410r50)" + 198 791.324r,)° —
381 040.614r,,)° — 139 383.444r,,)" —
866.44Ar o) (Argy) + 2367.67Aroo)2(ArOH) +

2206.790r,)? (17)

with correlationR = 0.999 93 and standard deviatior= 14.31

cm~L. The vibrational energy levels are computed variationally

in a double harmonic oscillator basis. The fundamental

frequencies for the ©-O and the G-H stretching modes are

found to be 176 and 3321 cr respectively. These data can
be compared to the corresponding 198 and 3773'¢rarmonic

2 except the torsiony;, mode, which is introduced in the
partition function as a summation of the torsional levels collected
in Table 3. The last case is similar to the third but also
introduces the &@-O stretching as a summation of the one-
dimensional energy levels obtained with eq 15. In Table 4 the
results are compared to the experimental data.

Case a of Table 4 shows that the harmonic picture yields a
much smalleiK, than the experimental value. Inclusion of the
anharmonic corrections, cases b, ¢, and d of Table 4, increases
uniformly theASandK, values and approaches the experimental
estimates. Cases b and c of Table 4 show a decreadélof
with respect to the pure harmonic case. Inclusion of the@
stretching levels, case d, is reflected in an increase from the
previous estimate, case c. Table 4 shows that these findings
favor, in absolute terms, the upper limit AfS and the lower
limit of AH experimental estimates. This behaviorAdfl has
been observed by Feyereisen et¥tom a harmonic model

values and to the anharmonic one-dimensional reSUItS, 153 anClNhere anharmonicity in some |OW_frequency modes is intro-

3548 cntl, see Table 2. The two-dimensional fundamental
frequency for the ©-O stretching is higher than the one-
dimensional value but is still closer to the experimental result

duced by halving the fundamental frequency. The smaller value
obtained by these authors fa&S can be attributed to the
simplicity of the anharmonic treatment for the low-frequency

than the value obtained at the MP2/aug-cc-pVTZ level, see viprations. Our most accurate result #, 0.0034 atm?, case
Table 2. On the other hand, the two-dimensional fundamental ¢ of Table 4, is smaller than the experimental vati6,0110

frequency for the ©H stretching is smaller than the experi-

atnr!. This discrepancy could be attributed to the use of the

mental value. This fact can be explained decomposing the harmonic oscillator closed form, eq 5, for the anharmonic

normal mode in internal coordinates. Thus, the Boatz and
Gordon decompositicf is applied with GAMES® using the

vg,vs, and vip modes. This fact would be reflected in a
contribution toK, smaller than expected because the energy

Hessian computed at the equilibrium position. The results show |eyels of an anharmonic oscillator are closer than in the harmonic

that the symmetric ©H stretching modeys, includes both the
variation of the bridge ©H bond and the variation of the free
donor O-H bond in a proportion of 3:1. Thus, this mode can
only be approximately described by a single internal coordinate.
However, the Boatz and Gordon decompositfoshows that
the O--O stretching modey7, is mainly composed of the-©0O
distance. In this work we will use the one-dimensional results
for thevz andvz modes because they seem to be more reliable.

Dimerization Reaction. For the dimerization reaction of
water

2H,0(9)= (H,0),(9) (18)
the equilibrium constant can be obtained as
In K, =Indp — 2:In gy + In N, + DJRT (19)

whereqy and gp represent the molecular partition functions
for the water monomer and dimer respectivey, represents
the association energy, ard, is Avogadro’s constant. To
compare with the available experimental data, AS andAH

have been calculated at 373 K and at a constant pressure of 1 In K, = —10.27+ 1595.29T + 162 015 58.497°

atm. The effect of anharmonicity on the thermodynamic
properties is analyzed using the refined partition function of
the monomerpe = 5.15 kcal/mol, and a lap obtained in four

picture. An estimate of the contribution kg, of these modes
can be obtained as follows. We can assume a contribution from
each mode equal to the increase, 0.0002 atobserved in case

d of Table 4 when the direct summation of the @ stretching
energy levels is added to case c of Table 4. Thus, the four
anharmonic modes yiel§, = 0.0042 atm?, a result still smaller
than the experimental. Although the present work is not
accurate enough for a quantitative conclusion, the higher
found experimentally could, to some extent, be associated to
the assumptions used in the experimental wérlOur results
together with the findings of Feyereisen et&duggest the utility

of more accurate experimental studies to firmly establish the
AS, AH, and theK, values.

An analytical expression for the variation df, with
temperature can be derived from eq 19. Therefore, a canonical
partition function for the dimer is obtained using temperatures
from 273.15 to 373.15 K at a constant pressure of 1 atm using
the conditions of case d of Table 4. Using the monomer and
dimer partition functions and eq 19 we get

(20)

Figure 3 shows how the difference between the calculated and
the experimentaK, decreases with temperature. This is a

different cases. The first and second cases are obtained applyingonsequence of the population of energy levels. Both curves

eq 5 with the harmonic and anharmonic data of Table 2,

show the same high-temperature limit that, from eq 20, is found

respectively. The third case uses the anharmonic data of Tableto be 3.47 10° atnT ..
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Figure 3. Variation with temperature of the equilibrium constay,
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